Lecture 16: Recall:
Prop: Let V be an inner product space and $S_{n}=\left\{\vec{\omega}_{1}, \ldots, \vec{\omega}_{n}\right\}$ be a linearly independent subset of V. Define:

$$
S_{n}^{\prime}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\} \text { where } \vec{v}_{1}=\vec{w}_{1} \text { and }
$$

for $k=2, \ldots, n$,

$$
\vec{v}_{k}^{\prime} \operatorname{def}=\vec{w}_{k}-\sum_{j=1}^{k-1}\left(\frac{\left\langle\vec{w}_{k} \vec{v}_{j}\right\rangle}{\left\|\vec{v}_{j}\right\|^{2}}\right) \vec{v}_{j}
$$

Then: S_{n}^{\prime} is orthogonal and $S_{p a n}\left(S_{n}{ }^{\prime}\right)=\operatorname{span}\left(S_{n}\right)$
The above construction of an orthogonal basis is called Gram-Schmidt process.

Consider $V=P(\mathbb{R})$ equipped with the inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t
$$

Let $\beta=\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$ be standard ordered basis for $P(\mathbb{R})$.
Take $\vec{v}_{1}=1$.
Then: $\vec{v}_{2}=x-\frac{\left\langle x, \vec{v}_{1}\right\rangle}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}^{\prime \prime}=x$

$$
\vec{v}_{3}=x^{2}-\frac{\left.x^{2}, \vec{v}_{1}\right\rangle}{\left\|\vec{v}_{1}\right\|^{2} / 3} \vec{v}_{1}-\frac{\left.2 x^{2}, \vec{v}_{2}\right\rangle}{\left\|\vec{v}_{2}\right\|^{2}} \vec{v}_{2}=x^{2}-\frac{1}{3}
$$

$$
\begin{aligned}
\vec{v}_{4} & =x^{3}-\frac{\left\langle x^{3}, \vec{v}_{1}\right\rangle / \frac{0}{v}}{\left\|\vec{v}_{1}\right\|^{2}} \sqrt{-\frac{\left\langle x^{3}, \vec{v}_{2}\right\rangle}{\left\|\vec{v}_{2}\right\|^{2}} \vec{v}_{2}}-\frac{\left\langle x^{3}, \vec{v}_{3}\right\rangle^{\prime}}{\left\|\vec{v}_{3}\right\|^{2}} \vec{v}_{3} \\
& =x^{3}-\frac{3}{5} x \text { and so on,..., for } P(\mathbb{R})
\end{aligned}
$$

This produces an orthogonal basis $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots\right\}$, whose elements are called Legendre polynomial.

Corollary: Let V be a non-zero finite-dim inner produd space. Then, V has an orthonormal basis $\beta=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ st. $\forall \vec{x} \in V$, we have: $\vec{x}=\sum_{i=1}^{n}\left\langle\vec{x}, \vec{v}_{i}\right\rangle \vec{v}_{i}$
Corollary: Let V be a non-zero finite-dim inner product space with an orthonormal basis $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$. Let T be a linear operator on V. Let $A=[T]_{\beta}$. Then: $A_{i j}=\left\langle T\left(\vec{v}_{j}\right), \vec{v}_{i}\right\rangle$. Proof: $[T]_{\beta}=\left(\begin{array}{cc}{\left[\begin{array}{l}1 \\ \left.\cdots\left(\vec{v}_{j}\right)\right]_{\beta} \\ \\ \cdots\end{array}\right) \quad T\left(\vec{v}_{j}\right)=\sum_{i=1}^{n} \underbrace{\left\langle T\left(\vec{v}_{j}\right), \vec{v}_{i}\right\rangle}_{A_{i j}^{\prime \prime}} \stackrel{\rightharpoonup}{v}_{i}}\end{array}\right.$

Orthogonal complement
Def: Let S be a non-empty subset of an inner product space V. The orthogonal complement of S is defined as: $S^{\perp} \stackrel{\operatorname{def}}{=}\{\vec{x} \in V=\langle\vec{x}, \vec{y}\rangle=0$ for $\forall \vec{y} \in S\}$

Proposition: Let V be an inner product space and $W \subset V$ a finite-dim subspace of V. Then: $\forall \vec{y} \in V, \exists!\vec{u} \in W$ and $\vec{z} \in W^{\perp}$ such that $\vec{y}=\vec{u}+\vec{z}$.
Furthermore, if $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is an orthonormal basis for W, then: $\quad \vec{u}=\sum_{i=1}^{k}\left\langle\vec{y}_{,} \vec{v}_{i}\right\rangle \vec{v}_{i}$
The vector $\vec{u} \in W$ is called the orthogonal projection of \vec{y} on W.

Proof: Given $\vec{y} \in V$, we set $\vec{u} \stackrel{\operatorname{def}}{=} \sum_{i=1}^{k}\left\langle\vec{y}^{\prime}, \vec{v}_{i}\right\rangle \vec{v}_{i} \in W$ and $\vec{z}=$ def $\vec{y}-\vec{u}$. Then: $\vec{y}=\vec{u}+\vec{w}$.
Now,

$$
\begin{aligned}
& \quad=\left\langle\vec{y}^{W}, \vec{v}_{j}\right\rangle \\
& \left.\therefore \vec{z}, \sum_{i=1}^{k} b_{k} \vec{v}_{i}\right\rangle=\sum_{i=1}^{k} \overline{b_{k}}\left\langle\vec{z} \vec{y}^{0} \vec{v}_{i}\right\rangle=0 \\
& \therefore \vec{z} \in W^{\perp}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle\vec{y}, \vec{v}_{j}\right\rangle-\left\langle\vec{u}, \vec{v}_{j}\right\rangle \\
& \left.=\left\langle\vec{y}, \vec{v}_{j}\right\rangle-\frac{\sum_{i=1}^{k}\left\langle\vec{y}_{,} \vec{v}_{i}\right\rangle\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle}{\left\langle\vec{v}^{\prime \prime}\right.} \vec{v}_{v_{j}}\right\rangle
\end{aligned}
$$

For uniqueness, suppose $\exists \vec{u}^{\prime} \in W$ and $\vec{z}^{\prime} \in W^{\perp}$ such that:

Claim: $W \cap W^{\perp}=\{\overrightarrow{0}\}$
Pf: Take $\vec{\omega} \in \omega \cap W^{\perp}$. Then: $\langle\vec{\omega}, \vec{\omega}\rangle=0$

$$
\Leftrightarrow \vec{\omega}=\stackrel{\rightharpoonup}{\omega}
$$

This implies: $\quad \vec{u}-\vec{u}^{\prime}=\vec{z}^{\prime}-\vec{z}=\overrightarrow{0}$

$$
\Leftrightarrow \vec{u}=\vec{u}^{\prime} \text { and } \vec{z}=\vec{z}^{\prime}
$$

Corollary: With notations as above, then:

$$
\|\vec{y}-\vec{x}\| \geqslant\left\|\vec{y}-\overrightarrow{u_{N}}\right\| \quad \text { for } \quad \forall \vec{x} \in W
$$

and equality holds iff $\vec{x}=\vec{u} \stackrel{N}{v}$ W

Remark: Orthogonal projection is the vector in W closest to \vec{y}.

Proof: Let $\vec{x} \in W$. Then: $\vec{y}=\underset{\sim}{\underset{w}{w}}+\underset{W^{\perp}}{\vec{z}} \Rightarrow \vec{z}=\vec{y}-\vec{u}$

$$
\begin{aligned}
& =\langle\vec{u}-\vec{x}, \vec{u}-\vec{x}\rangle+\langle\vec{u}-\vec{x}, \vec{z}\rangle+\langle\vec{z}, \vec{u}-\vec{x}\rangle+\langle\vec{z}, \vec{z}\rangle \\
& =\|\vec{u}-\vec{x}\|^{2}+\|\vec{z}\|^{2} \geqslant\|\vec{z}\|^{2}=\|\vec{y}-\vec{u}\|^{2}
\end{aligned}
$$

The equality holds iff $\|\vec{u}-\vec{x}\|^{2}=0$ iff $\vec{u}=\vec{x}$.

Proposition: Suppose $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is an orthonormal set in an n-dimensional inner product space V. Then:
(a) S can extended to an orthonormal basis $\left\{\vec{v}_{1}, \bar{v}_{2}, \ldots, \vec{v}_{k}, \vec{v}_{k+1}, \ldots \vec{v}_{n}\right\}$ for V.
(b) If $W=\operatorname{span}(S)$, then $S_{1}=\left\{\vec{v}_{k+1}, \ldots, \vec{v}_{n}\right\}$ is an orthonormal basis for W^{\perp} (exercise)
(c) If W is any subspace of V, then:

$$
\operatorname{dim}(V)=\operatorname{dim}(w)+\operatorname{dim}\left(w^{\perp}\right)
$$

Proof: (a) We first extend S to a basis:

$$
\{\underbrace{\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right.}_{L . I .}, \vec{\omega}_{k+1}, \ldots, \vec{\omega}_{n}\} \text { for } V \text {. }
$$

Then, we apply the $G-S$ process to this basis.
$\because S$ is orthonormal, $\therefore \vec{v}_{1}, \ldots, \vec{v}_{k}$ remains the same during the G-S process.
So, this process gives an orthonormal basis for V of the form $\underbrace{\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right.}_{\text {unchanged }}, \underbrace{\vec{v}_{k+1}, \ldots, \vec{v}_{n}}_{\text {new }}\}$
(c) For any W, choose an orthonormal basis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ for W and extend it to an orthonormal basis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}, \vec{v}_{k+1}, \ldots, \vec{v}_{n}\right\}$ for V.

Then:

$$
\begin{aligned}
\operatorname{dim}(V)=n & =k+(n-k) \\
& =\operatorname{dim}(w)+\operatorname{dim}\left(W^{\perp}\right)
\end{aligned}
$$

Remark: In fact, a "complement" to a subspace WCV $(\operatorname{dim}(V)<\infty)$ is another subspace $U \subset V$ sit.

$$
\left\{\begin{array}{l}
\cdot W \cap U=\{\overrightarrow{0}\} \\
\cdot \operatorname{dim}(W)+\operatorname{dim}(U)=\operatorname{dim}(V)
\end{array} \Rightarrow V=W \oplus U\right.
$$

IV
a special complement to W

Adjoint of a linear operator
Prop: Let V be a finite-dim. inner product space over F. Then for any linear transformation $g: V \rightarrow F$ (linear functional), $\exists!\vec{y} \in V$ s.t. $g(\vec{x})=\langle\vec{x}, \vec{y}\rangle$ for all $\vec{x} \in V$.
Proof: Let $\beta=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be an orthurnormal basis for V.
Set:

$$
\vec{y}=\sum_{i=1}^{n} \overline{g\left(\vec{v}_{i}\right)} \stackrel{\rightharpoonup}{v}_{i}
$$

We have: $\left\langle\vec{v}_{j}, \vec{y}\right\rangle=\sum_{i=1}^{n} g\left(\vec{v}_{i}\right)\left\langle\vec{v}_{j}, \vec{v}_{i}\right\rangle=g\left(\vec{v}_{j}\right)$

$$
\Rightarrow \quad g(\vec{x})=\langle\vec{x}, \vec{y}\rangle \text { for all } \vec{x} \in V
$$

If $\exists \vec{y}^{\prime} \in V$ sit. $g(\vec{x})=\left\langle\vec{x}, \vec{y}^{\prime}\right\rangle$ for $\forall \vec{x}$.
then,

$$
\begin{aligned}
& \langle\vec{x}, \vec{y}\rangle=g(\vec{x})=\left\langle\vec{x}, \vec{y}^{\prime}\right\rangle \text { for } \forall \vec{x} \\
& \Rightarrow \vec{y}=\vec{y}^{\prime}
\end{aligned}
$$

Theorem: Let V be a finite-dim inner product space. Let T be a linear operator on V. Then: \exists ! linear operator $T^{*}: V \rightarrow V$ such that: $\langle T(\vec{x}), \vec{y}\rangle=\left\langle\vec{x}, T^{*}(\vec{y})\right\rangle$ for $\forall \vec{x}, \vec{y} \in V$. T^{*} is called the adjoint of T.
Proof: Given any $\vec{y} \in V$, the $\operatorname{map} \quad g_{\vec{y}}: V \rightarrow F$ defined by. $g_{\vec{y}}(\vec{x})=\langle T(\vec{x}), \vec{y}\rangle$ is linear $[\because\langle\cdot, \cdot\rangle$ is linear in By the previous proposition, $\exists!\vec{y}^{\prime} \in V$ the $1^{\text {st }}$ argument)

$$
T \text { is }{ }^{\top} \text { linear }
$$ such that $\langle T(\vec{x}), \vec{y}\rangle=\left\langle\vec{x}, \vec{y}^{\prime}\right\rangle$ for all $\vec{x} \in V$.

$\vec{g}_{\vec{y}}^{\prime \prime}(\vec{x})$ Now, de fine: $T^{*}: V \rightarrow V$ by $T^{*}(\vec{y})=\vec{y}^{\prime}$. uniquely

To see that T^{*} is linear, let $\vec{y}_{1}, \vec{y}_{2} \in V$ and $C \in F$ Then $\forall \vec{x} \in V$, we have:

$$
\begin{aligned}
\langle\vec{x} \in V \text {, we have: } \\
\begin{aligned}
\left\langle\vec{x}, T^{*}\left(c \vec{y}_{1}+\vec{y}_{2}\right)\right\rangle & =\left\langle T(\vec{x}), c \vec{y}_{1}+\vec{y}_{2}\right\rangle \\
& =\bar{c}\left\langle T(\vec{x}), \vec{y}_{1}\right\rangle+\left\langle T(\vec{x}), \vec{y}_{2}\right\rangle \\
& =\bar{c}\left\langle\vec{x}, T^{*}\left(\vec{y}_{1}\right)\right\rangle+\left\langle\vec{x}, T^{*}\left(\vec{y}_{2}\right)\right\rangle \\
& =\left\langle\vec{x}, c T^{*}\left(\vec{y}_{1}\right)+T^{*}\left(\vec{y}_{2}\right)\right\rangle \\
\Rightarrow T^{*}\left(c \vec{y}_{1}+\vec{y}_{2}\right) & =c T^{*}\left(\vec{y}_{1}\right)+T^{*}\left(\vec{y}_{2}\right)
\end{aligned}
\end{aligned}
$$

Remark:

$$
\frac{\operatorname{Remak}:}{\langle\vec{x}, T(\vec{y})\rangle}=\overline{\langle(\vec{y}), \vec{x}\rangle}=\overline{\left\langle\vec{y}, T^{*}(\vec{x})\right\rangle}=\left\langle T^{*}(\vec{x}), \vec{y}\right\rangle
$$

Proposition: Let V be a finite-dim inner product space and let β be an orthonormal basis for V. Then $\forall T=V \rightarrow V$, we have:

$$
\begin{aligned}
& {\left[T^{*}\right]_{\beta}=\left([T]_{\beta}\right)^{*} \leftarrow \text { conjugate transpose }} \\
& \left(A^{*}=(\bar{A})^{\top}\right)
\end{aligned}
$$

Proof: Let $A=[T]_{\beta}, B=\left[T^{*}\right]_{\beta}$ and $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$.

$$
\begin{aligned}
B_{i j}=\left\langle T^{*}\left(\vec{v}_{j}\right), \vec{v}_{i}\right\rangle=\left\langle\vec{v}_{j}, T\left(\vec{v}_{i}\right)\right\rangle & =\overline{\left\langle T\left(\vec{v}_{i}\right), \vec{v}_{j}\right\rangle} \\
& =\frac{A_{j i}}{}
\end{aligned}
$$

